Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K—the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics.more » « less
- 
            The fields of nonlinear optics, photovoltaics, and thermoelectrics have been strongly impacted by materials research, and quaternary chalcogenides are one general class of materials that has recently generated strong interest. An understanding of the thermal properties is paramount in these and other applications of interest. The thermal properties of BaCdSnSe4, a quaternary chalcogenide that is of interest for applications in nonlinear optics, are reported. Specifically, the thermal conductivity over a large temperature range and heat capacity are evaluated in light of the structural features of this material. Low thermal conductivity results from the complex unit cell as well as local dynamic disorder from Cd in the CdSe4tetrahedra in the crystal structure. The results and analyses reported herein are presented to enhance the fundamental understanding of the thermal properties of these materials, and can be related and applied to other quaternary chalcogenides that are of interest for energy‐related applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
